• Software
    • DNASTAR LASERGENE
      Comprehensive Sequence Analysis
      • Lasergene Molecular Biology
      • Lasergene Genomics
      • Lasergene Protein
    • NOVA APPLICATIONS
      Protein Modeling
      • NovaFold AI
      • NovaFold
      • NovaFold Antibody
      • NovaDock
  • Workflows
    • Molecular Biology Workflows
      • Automated Virtual Cloning
      • Clone Sequence Verification
      • Gel Electrophoresis Simulation
      • Multiple Sequence Alignment
      • Pairwise Sequence Alignment
      • PCR Site-Directed Mutagenesis
      • PCR Primer Design
      • Phylogenetic Analysis
      • Plasmid Maps
      • Sanger Sequence Assembly
      • Sequence Editing and Annotation
  • Protein Analysis
    • Antibody Modeling
    • Antibody Phage Display
    • Epitope Prediction
    • Protein Docking
    • Protein Sequence Analysis
    • Protein Stability Prediction
    • Protein Structural Alignment
    • Protein Structure Analysis
    • Protein Structure Prediction
  • Genomics
    • Clinical Research
    • De Novo Genome Assembly
    • Mauve Genome Alignment
    • Metagenomic Assembly
    • Variant Analysis
    • Viral Genome Analysis
    • Whole Genome/Whole Exome
  • Transcriptomics
    • ChIP-Seq Data Analysis
    • De Novo Transcriptome Assembly
    • RNA-Seq Alignment
  • Services
    • Protein Services
    • Genomic Services
  • Pricing
  • Resources
    • Product Updates
    • Product Notifications
    • Blog
    • Educational Software Request
    • Documentation
    • Technical Requirements
      • File Formats
      • Licensing Options
  • Training
    • Help + Tutorials
    • Webinars
    • Technical Support Request
  • About
    • Careers
    • Distributors
    • Legal Information
    • Privacy Policy
  • Contact

QUESTIONS? CALL 866.511.5090

DOWNLOAD FREE TRIAL
SHOPPING CART
MY ACCOUNT
DNASTAR DNASTAR
  • Software
    • DNASTAR LASERGENE
      Comprehensive Sequence Analysis
      • Lasergene Molecular Biology
      • Lasergene Genomics
      • Lasergene Protein
    • NOVA APPLICATIONS
      Protein Modeling
      • NovaFold AI
      • NovaFold
      • NovaFold Antibody
      • NovaDock
  • Workflows
    • Molecular Biology
      • Automated Virtual Cloning
      • Clone Sequence Verification
      • Gel Electrophoresis Simulation
      • Multiple Sequence Alignment
      • Pairwise Sequence Alignment
      • PCR Site-Directed Mutagenesis
      • PCR Primer Design
      • Phylogenetic Analysis
      • Plasmid Maps
      • Sanger Sequence Assembly
      • Sequence Editing and Annotation
    • Protein Analysis
      • Antibody Modeling
      • Antibody Phage Display
      • Epitope Prediction
      • Protein Docking
      • Protein Sequence Analysis
      • Protein Stability Prediction
      • Protein Structural Alignment
      • Protein Structure Analysis
      • Protein Structure Prediction
    • Genomics
      • Clinical Research
      • De Novo Genome Assembly
      • Mauve Genome Alignment
      • Metagenomic Assembly
      • Variant Analysis
      • Viral Genome Analysis
      • Whole Exome/Genome Sequencing
    • Transcriptomics
      • ChIP-Seq Data Analysis
      • De Novo Transcriptome Assembly
      • RNA-Seq Alignment and Analysis
  • Services
    • Protein Services
    • Genomic Services
  • Pricing
  • Resources
    • Product Updates
    • Product Notifications
    • Blog
    • Educational Software Request
    • Documentation
    • Technical Requirements
      • File Formats
      • Licensing Options
  • Training
    • Help + Tutorials
    • Webinars
    • Technical Support Request
  • About
    • Careers
    • Distributors
    • Legal Information
    • Privacy Policy
  • Contact

Decreased Memory Requirements for De Novo Genome Assembly in Lasergene 13

Decreased Memory Requirements for De Novo Genome Assembly in Lasergene 13

June 9, 2016 Next-Gen Sequencing

Users often ask how much RAM is required for a de novo genome assembly in Lasergene Genomics Suite, and we addressed that question for Lasergene 12 users in an earlier blog post. We’re excited to announce that with the release of Lasergene 13, RAM requirements for de novo genome assembly are significantly decreased, with the greatest improvements seen in assemblies of longer genomes and deeper coverage.

Let’s take a look at the memory requirement for genome assembly in Lasergene 13 compared to Lasergene 12. The graph below shows total memory usage vs. genome length for Illumina 2×100 paired end data sets for four organisms: Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, and Caenorhabditis elegans, each assembled using a target coverage of 50x in SeqMan NGen.
GenomeLength

Here we see up to a 50% reduction in RAM usage, with the largest improvement seen in the longer genomes. With the improved algorithms in Lasergene 13, the C. elegans genome can now be assembled on a desktop computer with 64 GB RAM.

We also see that RAM usage is reduced by a larger margin as the depth of the assembly increases. For example, look at the RAM requirements in Lasergene 12 and Lasergene 13 as we increase the depth of coverage on the N. crassa assembly:

 NCrassa

With each new release of Lasergene, we strive to add more functionality for our users, but also to improve the quality and accessibility of our software. With the reduction in RAM required for de novo genome assemblies, it is now more feasible than ever to do this work on a desktop computer.

Learn more about the Lasergene Genomics Suite here, or request a fully-functional free trial to perform your own assembly and analysis projects.

0
Share

Leave a Reply

Your email is safe with us.
Cancel Reply

Search Blog Posts

Categories

  • Best Practices
  • Clinical Research
  • DNASTAR Customer Stories
  • DNASTAR News
  • Events
  • Long Read Sequencing
  • Molecular Biology
  • Newsletters
  • Next-Gen Sequencing
  • Press Releases
  • Product Notifications
  • Product Updates
  • Publications
  • Resources
  • Structural Biology
  • Webinars
  • Workflows

Recent Posts

  • Lasergene 17.3.3 Release Notes June 29, 2022
  • Streamlining Variant Identification and Analysis Webinar June 23, 2022
  • Variant Annotation with Lasergene Genomics: The easy way to discover, annotate and filter sequence variants June 10, 2022
  • Expert-Guided Protein Structure Prediction Webinar May 13, 2022
  • Lasergene 17.3.2 Release Notes May 9, 2022

Tags

assembling sequences cloud Cloud Assemblies customers De Novo Assembly DNASTAR Genomics Lasergene Metagenomics Metagenomic Sequencing NCBI GenBank newsletters next-gen NGS NGS Sequence Alignment NGS Sequence Asembly publications seqbuilder pro SeqMan NGen sequence assembly Webinar

Archives

Find us on

Most Commented Posts

  • Lasergene 15.3 Release Notes By Katie Maxfield on October 24, 2018 4
  • EditSeq, PrimerSelect and classic MegAlign retired with the release of Lasergene 16.0 By Sharon Yildiz on July 12, 2019 4
  • How much disk space do I need for my templated genome assembly? By DNA STAR on November 24, 2015 4

Would you like to receive technical tips and special offers straight to your inbox?

  • Pricing
  • Software
  • Workflows
  • Resources
  • Training
  • About

Get a 14-Day free trial of our complete Lasergene package. Try before you buy!

FREE TRIAL DOWNLOAD

© 2022 — DNASTAR Privacy Policy

Prev Next
This website uses cookies to improve user experience and understand our web usage. By continuing to use our website, you consent to our use of cookies. Accept
Privacy & Cookies Policy
Necessary
Always Enabled